Langsung ke konten utama

Continuous multioutput is Not Supported Jaccard Python

There are 3 different approaches to evaluate the quality of predictions of a model:

Finally, Dummy estimators are useful to get a baseline value of those metrics for random predictions.

3.3.1. The scoring parameter: defining model evaluation rules¶

Model selection and evaluation using tools, such as grid_search.GridSearchCV and cross_validation.cross_val_score , take a scoring parameter that controls what metric they apply to the estimators evaluated.

3.3.1.1. Common cases: predefined values¶

For the most common use cases, you can designate a scorer object with the scoring parameter; the table below shows all possible values. All scorer ojects follow the convention that higher return values are better than lower return values. Thus the returns from mean_absolute_error and mean_squared_error, which measure the distance between the model and the data, are negated.

Scoring Function Comment
Classification
'accuracy' metrics.accuracy_score
'average_precision' metrics.average_precision_score
'f1' metrics.f1_score for binary targets
'f1_micro' metrics.f1_score micro-averaged
'f1_macro' metrics.f1_score macro-averaged
'f1_weighted' metrics.f1_score weighted average
'f1_samples' metrics.f1_score by multilabel sample
'log_loss' metrics.log_loss requires predict_proba support
'precision' etc. metrics.precision_score suffixes apply as with 'f1'
'recall' etc. metrics.recall_score suffixes apply as with 'f1'
'roc_auc' metrics.roc_auc_score
Clustering
'adjusted_rand_score' metrics.adjusted_rand_score
Regression
'mean_absolute_error' metrics.mean_absolute_error
'mean_squared_error' metrics.mean_squared_error
'median_absolute_error' metrics.median_absolute_error
'r2' metrics.r2_score

Usage examples:

              >>>                            from              sklearn              import              svm              ,              cross_validation              ,              datasets              >>>                            iris              =              datasets              .              load_iris              ()              >>>                            X              ,              y              =              iris              .              data              ,              iris              .              target              >>>                            model              =              svm              .              SVC              ()              >>>                            cross_validation              .              cross_val_score              (              model              ,              X              ,              y              ,              scoring              =              'wrong_choice'              )              Traceback (most recent call last):              ValueError:              'wrong_choice' is not a valid scoring value. Valid options are ['accuracy', 'adjusted_rand_score', 'average_precision', 'f1', 'f1_macro', 'f1_micro', 'f1_samples', 'f1_weighted', 'log_loss', 'mean_absolute_error', 'mean_squared_error', 'median_absolute_error', 'precision', 'precision_macro', 'precision_micro', 'precision_samples', 'precision_weighted', 'r2', 'recall', 'recall_macro', 'recall_micro', 'recall_samples', 'recall_weighted', 'roc_auc']              >>>                            clf              =              svm              .              SVC              (              probability              =              True              ,              random_state              =              0              )              >>>                            cross_validation              .              cross_val_score              (              clf              ,              X              ,              y              ,              scoring              =              'log_loss'              )              array([-0.07..., -0.16..., -0.06...])            

注解

The values listed by the ValueError exception correspond to the functions measuring prediction accuracy described in the following sections. The scorer objects for those functions are stored in the dictionary sklearn.metrics.SCORERS .

3.3.1.2. Defining your scoring strategy from metric functions¶

The module sklearn.metric also exposes a set of simple functions measuring a prediction error given ground truth and prediction:

  • functions ending with _score return a value to maximize, the higher the better.
  • functions ending with _error or _loss return a value to minimize, the lower the better. When converting into a scorer object using make_scorer , set the greater_is_better parameter to False (True by default; see the parameter description below).

Metrics available for various machine learning tasks are detailed in sections below.

Many metrics are not given names to be used as scoring values, sometimes because they require additional parameters, such as fbeta_score . In such cases, you need to generate an appropriate scoring object. The simplest way to generate a callable object for scoring is by using make_scorer . That function converts metrics into callables that can be used for model evaluation.

One typical use case is to wrap an existing metric function from the library with non-default values for its parameters, such as the beta parameter for the fbeta_score function:

              >>>                            from              sklearn.metrics              import              fbeta_score              ,              make_scorer              >>>                            ftwo_scorer              =              make_scorer              (              fbeta_score              ,              beta              =              2              )              >>>                            from              sklearn.grid_search              import              GridSearchCV              >>>                            from              sklearn.svm              import              LinearSVC              >>>                            grid              =              GridSearchCV              (              LinearSVC              (),              param_grid              =              {              'C'              :              [              1              ,              10              ]},              scoring              =              ftwo_scorer              )            

The second use case is to build a completely custom scorer object from a simple python function using make_scorer , which can take several parameters:

  • the python function you want to use ( my_custom_loss_func in the example below)
  • whether the python function returns a score ( greater_is_better=True , the default) or a loss ( greater_is_better=False ). If a loss, the output of the python function is negated by the scorer object, conforming to the cross validation convention that scorers return higher values for better models.
  • for classification metrics only: whether the python function you provided requires continuous decision certainties ( needs_threshold=True ). The default value is False.
  • any additional parameters, such as beta or labels in f1_score .

Here is an example of building custom scorers, and of using the greater_is_better parameter:

              >>>                            import              numpy              as              np              >>>                            def              my_custom_loss_func              (              ground_truth              ,              predictions              ):              ...                            diff              =              np              .              abs              (              ground_truth              -              predictions              )              .              max              ()              ...                            return              np              .              log              (              1              +              diff              )              ...              >>>                            # loss_func will negate the return value of my_custom_loss_func,              >>>                            #  which will be np.log(2), 0.693, given the values for ground_truth              >>>                            #  and predictions defined below.              >>>                            loss              =              make_scorer              (              my_custom_loss_func              ,              greater_is_better              =              False              )              >>>                            score              =              make_scorer              (              my_custom_loss_func              ,              greater_is_better              =              True              )              >>>                            ground_truth              =              [[              1              ,              1              ]]              >>>                            predictions              =              [              0              ,              1              ]              >>>                            from              sklearn.dummy              import              DummyClassifier              >>>                            clf              =              DummyClassifier              (              strategy              =              'most_frequent'              ,              random_state              =              0              )              >>>                            clf              =              clf              .              fit              (              ground_truth              ,              predictions              )              >>>                            loss              (              clf              ,              ground_truth              ,              predictions              )              -0.69...              >>>                            score              (              clf              ,              ground_truth              ,              predictions              )              0.69...            

3.3.1.3. Implementing your own scoring object¶

You can generate even more flexible model scorers by constructing your own scoring object from scratch, without using the make_scorer factory. For a callable to be a scorer, it needs to meet the protocol specified by the following two rules:

  • It can be called with parameters (estimator, X, y) , where estimator is the model that should be evaluated, X is validation data, and y is the ground truth target for X (in the supervised case) or None (in the unsupervised case).
  • It returns a floating point number that quantifies the estimator prediction quality on X , with reference to y . Again, by convention higher numbers are better, so if your scorer returns loss, that value should be negated.

3.3.2. Classification metrics¶

The sklearn.metrics module implements several loss, score, and utility functions to measure classification performance. Some metrics might require probability estimates of the positive class, confidence values, or binary decisions values. Most implementations allow each sample to provide a weighted contribution to the overall score, through the sample_weight parameter.

Some of these are restricted to the binary classification case:

matthews_corrcoef (y_true, y_pred) Compute the Matthews correlation coefficient (MCC) for binary classes
precision_recall_curve (y_true, probas_pred) Compute precision-recall pairs for different probability thresholds
roc_curve (y_true, y_score[, pos_label, ...]) Compute Receiver operating characteristic (ROC)

Others also work in the multiclass case:

confusion_matrix (y_true, y_pred[, labels]) Compute confusion matrix to evaluate the accuracy of a classification
hinge_loss (y_true, pred_decision[, labels, ...]) Average hinge loss (non-regularized)

Some also work in the multilabel case:

accuracy_score (y_true, y_pred[, normalize, ...]) Accuracy classification score.
classification_report (y_true, y_pred[, ...]) Build a text report showing the main classification metrics
f1_score (y_true, y_pred[, labels, ...]) Compute the F1 score, also known as balanced F-score or F-measure
fbeta_score (y_true, y_pred, beta[, labels, ...]) Compute the F-beta score
hamming_loss (y_true, y_pred[, classes]) Compute the average Hamming loss.
jaccard_similarity_score (y_true, y_pred[, ...]) Jaccard similarity coefficient score
log_loss (y_true, y_pred[, eps, normalize, ...]) Log loss, aka logistic loss or cross-entropy loss.
precision_recall_fscore_support (y_true, y_pred) Compute precision, recall, F-measure and support for each class
precision_score (y_true, y_pred[, labels, ...]) Compute the precision
recall_score (y_true, y_pred[, labels, ...]) Compute the recall
zero_one_loss (y_true, y_pred[, normalize, ...]) Zero-one classification loss.

And some work with binary and multilabel (but not multiclass) problems:

average_precision_score (y_true, y_score[, ...]) Compute average precision (AP) from prediction scores
roc_auc_score (y_true, y_score[, average, ...]) Compute Area Under the Curve (AUC) from prediction scores

In the following sub-sections, we will describe each of those functions, preceded by some notes on common API and metric definition.

3.3.2.1. From binary to multiclass and multilabel¶

Some metrics are essentially defined for binary classification tasks (e.g. f1_score , roc_auc_score ). In these cases, by default only the positive label is evaluated, assuming by default that the positive class is labelled 1 (though this may be configurable through the pos_label parameter).

In extending a binary metric to multiclass or multilabel problems, the data is treated as a collection of binary problems, one for each class. There are then a number of ways to average binary metric calculations across the set of classes, each of which may be useful in some scenario. Where available, you should select among these using the average parameter.

  • "macro" simply calculates the mean of the binary metrics, giving equal weight to each class. In problems where infrequent classes are nonetheless important, macro-averaging may be a means of highlighting their performance. On the other hand, the assumption that all classes are equally important is often untrue, such that macro-averaging will over-emphasize the typically low performance on an infrequent class.
  • "weighted" accounts for class imbalance by computing the average of binary metrics in which each class's score is weighted by its presence in the true data sample.
  • "micro" gives each sample-class pair an equal contribution to the overall metric (except as a result of sample-weight). Rather than summing the metric per class, this sums the dividends and divisors that make up the the per-class metrics to calculate an overall quotient. Micro-averaging may be preferred in multilabel settings, including multiclass classification where a majority class is to be ignored.
  • "samples" applies only to multilabel problems. It does not calculate a per-class measure, instead calculating the metric over the true and predicted classes for each sample in the evaluation data, and returning their ( sample_weight -weighted) average.
  • Selecting average=None will return an array with the score for each class.

While multiclass data is provided to the metric, like binary targets, as an array of class labels, multilabel data is specified as an indicator matrix, in which cell [i, j] has value 1 if sample i has label j and value 0 otherwise.

3.3.2.2. Accuracy score¶

The accuracy_score function computes the accuracy, either the fraction (default) or the count (normalize=False) of correct predictions.

In multilabel classification, the function returns the subset accuracy. If the entire set of predicted labels for a sample strictly match with the true set of labels, then the subset accuracy is 1.0; otherwise it is 0.0.

If \hat{y}_i is the predicted value of the i-th sample and y_i is the corresponding true value, then the fraction of correct predictions over n_\text{samples} is defined as

\texttt{accuracy}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples}-1} 1(\hat{y}_i = y_i)

where 1(x) is the indicator function.

              >>>                            import              numpy              as              np              >>>                            from              sklearn.metrics              import              accuracy_score              >>>                            y_pred              =              [              0              ,              2              ,              1              ,              3              ]              >>>                            y_true              =              [              0              ,              1              ,              2              ,              3              ]              >>>                            accuracy_score              (              y_true              ,              y_pred              )              0.5              >>>                            accuracy_score              (              y_true              ,              y_pred              ,              normalize              =              False              )              2            

In the multilabel case with binary label indicators:

              >>>                            accuracy_score              (              np              .              array              ([[              0              ,              1              ],              [              1              ,              1              ]]),              np              .              ones              ((              2              ,              2              )))              0.5            

3.3.2.3. Cohen's kappa¶

The function cohen_kappa_score computes Cohen's kappa statistic. This measure is intended to compare labelings by different human annotators, not a classifier versus a ground truth.

The kappa score (see docstring) is a number between -1 and 1. Scores above .8 are generally considered good agreement; zero or lower means no agreement (practically random labels).

Kappa scores can be computed for binary or multiclass problems, but not for multilabel problems (except by manually computing a per-label score) and not for more than two annotators.

3.3.2.4. Confusion matrix¶

The confusion_matrix function evaluates classification accuracy by computing the confusion matrix.

By definition, entry i, j in a confusion matrix is the number of observations actually in group i, but predicted to be in group j. Here is an example:

              >>>                            from              sklearn.metrics              import              confusion_matrix              >>>                            y_true              =              [              2              ,              0              ,              2              ,              2              ,              0              ,              1              ]              >>>                            y_pred              =              [              0              ,              0              ,              2              ,              2              ,              0              ,              2              ]              >>>                            confusion_matrix              (              y_true              ,              y_pred              )              array([[2, 0, 0],                              [0, 0, 1],                              [1, 0, 2]])            

Here is a visual representation of such a confusion matrix (this figure comes from the Confusion matrix example):

../_images/plot_confusion_matrix_0011.png

3.3.2.5. Classification report¶

The classification_report function builds a text report showing the main classification metrics. Here is a small example with custom target_names and inferred labels:

              >>>                            from              sklearn.metrics              import              classification_report              >>>                            y_true              =              [              0              ,              1              ,              2              ,              2              ,              0              ]              >>>                            y_pred              =              [              0              ,              0              ,              2              ,              2              ,              0              ]              >>>                            target_names              =              [              'class 0'              ,              'class 1'              ,              'class 2'              ]              >>>                            print              (              classification_report              (              y_true              ,              y_pred              ,              target_names              =              target_names              ))                              precision    recall  f1-score   support                              class 0       0.67      1.00      0.80         2                              class 1       0.00      0.00      0.00         1                              class 2       1.00      1.00      1.00         2              avg / total       0.67      0.80      0.72         5            

3.3.2.6. Hamming loss¶

The hamming_loss computes the average Hamming loss or Hamming distance between two sets of samples.

If \hat{y}_j is the predicted value for the j-th label of a given sample, y_j is the corresponding true value, and n_\text{labels} is the number of classes or labels, then the Hamming loss L_{Hamming} between two samples is defined as:

L_{Hamming}(y, \hat{y}) = \frac{1}{n_\text{labels}} \sum_{j=0}^{n_\text{labels} - 1} 1(\hat{y}_j \not= y_j)

where 1(x) is the indicator function.

              >>>                            from              sklearn.metrics              import              hamming_loss              >>>                            y_pred              =              [              1              ,              2              ,              3              ,              4              ]              >>>                            y_true              =              [              2              ,              2              ,              3              ,              4              ]              >>>                            hamming_loss              (              y_true              ,              y_pred              )              0.25            

In the multilabel case with binary label indicators:

              >>>                            hamming_loss              (              np              .              array              ([[              0              ,              1              ],              [              1              ,              1              ]]),              np              .              zeros              ((              2              ,              2              )))              0.75            

注解

In multiclass classification, the Hamming loss corresponds to the Hamming distance between y_true and y_pred which is similar to the Zero one loss function. However, while zero-one loss penalizes prediction sets that do not strictly match true sets, the Hamming loss penalizes individual labels. Thus the Hamming loss, upper bounded by the zero-one loss, is always between zero and one, inclusive; and predicting a proper subset or superset of the true labels will give a Hamming loss between zero and one, exclusive.

3.3.2.7. Jaccard similarity coefficient score¶

The jaccard_similarity_score function computes the average (default) or sum of Jaccard similarity coefficients, also called the Jaccard index, between pairs of label sets.

The Jaccard similarity coefficient of the i-th samples, with a ground truth label set y_i and predicted label set \hat{y}_i, is defined as

J(y_i, \hat{y}_i) = \frac{|y_i \cap \hat{y}_i|}{|y_i \cup \hat{y}_i|}.

In binary and multiclass classification, the Jaccard similarity coefficient score is equal to the classification accuracy.

              >>>                            import              numpy              as              np              >>>                            from              sklearn.metrics              import              jaccard_similarity_score              >>>                            y_pred              =              [              0              ,              2              ,              1              ,              3              ]              >>>                            y_true              =              [              0              ,              1              ,              2              ,              3              ]              >>>                            jaccard_similarity_score              (              y_true              ,              y_pred              )              0.5              >>>                            jaccard_similarity_score              (              y_true              ,              y_pred              ,              normalize              =              False              )              2            

In the multilabel case with binary label indicators:

              >>>                            jaccard_similarity_score              (              np              .              array              ([[              0              ,              1              ],              [              1              ,              1              ]]),              np              .              ones              ((              2              ,              2              )))              0.75            

3.3.2.8. Precision, recall and F-measures¶

Intuitively, precision is the ability of the classifier not to label as positive a sample that is negative, and recall is the ability of the classifier to find all the positive samples.

The F-measure (F_\beta and F_1 measures) can be interpreted as a weighted harmonic mean of the precision and recall. A F_\beta measure reaches its best value at 1 and its worst score at 0. With \beta = 1, F_\beta and F_1 are equivalent, and the recall and the precision are equally important.

The precision_recall_curve computes a precision-recall curve from the ground truth label and a score given by the classifier by varying a decision threshold.

The average_precision_score function computes the average precision (AP) from prediction scores. This score corresponds to the area under the precision-recall curve.

Several functions allow you to analyze the precision, recall and F-measures score:

average_precision_score (y_true, y_score[, ...]) Compute average precision (AP) from prediction scores
f1_score (y_true, y_pred[, labels, ...]) Compute the F1 score, also known as balanced F-score or F-measure
fbeta_score (y_true, y_pred, beta[, labels, ...]) Compute the F-beta score
precision_recall_curve (y_true, probas_pred) Compute precision-recall pairs for different probability thresholds
precision_recall_fscore_support (y_true, y_pred) Compute precision, recall, F-measure and support for each class
precision_score (y_true, y_pred[, labels, ...]) Compute the precision
recall_score (y_true, y_pred[, labels, ...]) Compute the recall

Note that the precision_recall_curve function is restricted to the binary case. The average_precision_score function works only in binary classification and multilabel indicator format.

3.3.2.8.1. Binary classification¶

In a binary classification task, the terms ''positive'' and ''negative'' refer to the classifier's prediction, and the terms ''true'' and ''false'' refer to whether that prediction corresponds to the external judgment (sometimes known as the ''observation''). Given these definitions, we can formulate the following table:

Actual class (observation)
Predicted class (expectation) tp (true positive) Correct result fp (false positive) Unexpected result
fn (false negative) Missing result tn (true negative) Correct absence of result

In this context, we can define the notions of precision, recall and F-measure:

\text{precision} = \frac{tp}{tp + fp},

\text{recall} = \frac{tp}{tp + fn},

F_\beta = (1 + \beta^2) \frac{\text{precision} \times \text{recall}}{\beta^2 \text{precision} + \text{recall}}.

Here are some small examples in binary classification:

                >>>                                from                sklearn                import                metrics                >>>                                y_pred                =                [                0                ,                1                ,                0                ,                0                ]                >>>                                y_true                =                [                0                ,                1                ,                0                ,                1                ]                >>>                                metrics                .                precision_score                (                y_true                ,                y_pred                )                1.0                >>>                                metrics                .                recall_score                (                y_true                ,                y_pred                )                0.5                >>>                                metrics                .                f1_score                (                y_true                ,                y_pred                )                0.66...                >>>                                metrics                .                fbeta_score                (                y_true                ,                y_pred                ,                beta                =                0.5                )                0.83...                >>>                                metrics                .                fbeta_score                (                y_true                ,                y_pred                ,                beta                =                1                )                0.66...                >>>                                metrics                .                fbeta_score                (                y_true                ,                y_pred                ,                beta                =                2                )                0.55...                >>>                                metrics                .                precision_recall_fscore_support                (                y_true                ,                y_pred                ,                beta                =                0.5                )                (array([ 0.66...,  1.        ]), array([ 1. ,  0.5]), array([ 0.71...,  0.83...]), array([2, 2]...))                >>>                                import                numpy                as                np                >>>                                from                sklearn.metrics                import                precision_recall_curve                >>>                                from                sklearn.metrics                import                average_precision_score                >>>                                y_true                =                np                .                array                ([                0                ,                0                ,                1                ,                1                ])                >>>                                y_scores                =                np                .                array                ([                0.1                ,                0.4                ,                0.35                ,                0.8                ])                >>>                                precision                ,                recall                ,                threshold                =                precision_recall_curve                (                y_true                ,                y_scores                )                >>>                                precision                array([ 0.66...,  0.5       ,  1.        ,  1.        ])                >>>                                recall                array([ 1. ,  0.5,  0.5,  0. ])                >>>                                threshold                array([ 0.35,  0.4 ,  0.8 ])                >>>                                average_precision_score                (                y_true                ,                y_scores                )                0.79...              

3.3.2.8.2. Multiclass and multilabel classification¶

In multiclass and multilabel classification task, the notions of precision, recall, and F-measures can be applied to each label independently. There are a few ways to combine results across labels, specified by the average argument to the average_precision_score (multilabel only), f1_score , fbeta_score , precision_recall_fscore_support , precision_score and recall_score functions, as described above. Note that for "micro"-averaging in a multiclass setting with all labels included will produce equal precision, recall and F, while "weighted" averaging may produce an F-score that is not between precision and recall.

To make this more explicit, consider the following notation:

Then the metrics are defined as:

average Precision Recall F_beta
"micro" P(y, \hat{y}) R(y, \hat{y}) F_\beta(y, \hat{y})
"samples" \frac{1}{\left|S\right|} \sum_{s \in S} P(y_s, \hat{y}_s) \frac{1}{\left|S\right|} \sum_{s \in S} R(y_s, \hat{y}_s) \frac{1}{\left|S\right|} \sum_{s \in S} F_\beta(y_s, \hat{y}_s)
"macro" \frac{1}{\left|L\right|} \sum_{l \in L} P(y_l, \hat{y}_l) \frac{1}{\left|L\right|} \sum_{l \in L} R(y_l, \hat{y}_l) \frac{1}{\left|L\right|} \sum_{l \in L} F_\beta(y_l, \hat{y}_l)
"weighted" \frac{1}{\sum_{l \in L} \left|\hat{y}_l\right|} \sum_{l \in L} \left|\hat{y}_l\right| P(y_l, \hat{y}_l) \frac{1}{\sum_{l \in L} \left|\hat{y}_l\right|} \sum_{l \in L} \left|\hat{y}_l\right| R(y_l, \hat{y}_l) \frac{1}{\sum_{l \in L} \left|\hat{y}_l\right|} \sum_{l \in L} \left|\hat{y}_l\right| F_\beta(y_l, \hat{y}_l)
None \langle P(y_l, \hat{y}_l) | l \in L \rangle \langle R(y_l, \hat{y}_l) | l \in L \rangle \langle F_\beta(y_l, \hat{y}_l) | l \in L \rangle
                >>>                                from                sklearn                import                metrics                >>>                                y_true                =                [                0                ,                1                ,                2                ,                0                ,                1                ,                2                ]                >>>                                y_pred                =                [                0                ,                2                ,                1                ,                0                ,                0                ,                1                ]                >>>                                metrics                .                precision_score                (                y_true                ,                y_pred                ,                average                =                'macro'                )                0.22...                >>>                                metrics                .                recall_score                (                y_true                ,                y_pred                ,                average                =                'micro'                )                ...                                0.33...                >>>                                metrics                .                f1_score                (                y_true                ,                y_pred                ,                average                =                'weighted'                )                0.26...                >>>                                metrics                .                fbeta_score                (                y_true                ,                y_pred                ,                average                =                'macro'                ,                beta                =                0.5                )                0.23...                >>>                                metrics                .                precision_recall_fscore_support                (                y_true                ,                y_pred                ,                beta                =                0.5                ,                average                =                None                )                ...                                (array([ 0.66...,  0.        ,  0.        ]), array([ 1.,  0.,  0.]), array([ 0.71...,  0.        ,  0.        ]), array([2, 2, 2]...))              

For multiclass classification with a "negative class", it is possible to exclude some labels:

                >>>                                metrics                .                recall_score                (                y_true                ,                y_pred                ,                labels                =                [                1                ,                2                ],                average                =                'micro'                )                ...                                # excluding 0, no labels were correctly recalled                0.0              

Similarly, labels not present in the data sample may be accounted for in macro-averaging.

                >>>                                metrics                .                precision_score                (                y_true                ,                y_pred                ,                labels                =                [                0                ,                1                ,                2                ,                3                ],                average                =                'macro'                )                ...                                0.166...              

3.3.2.9. Hinge loss¶

The hinge_loss function computes the average distance between the model and the data using hinge loss, a one-sided metric that considers only prediction errors. (Hinge loss is used in maximal margin classifiers such as support vector machines.)

If the labels are encoded with +1 and -1, y: is the true value, and w is the predicted decisions as output by decision_function , then the hinge loss is defined as:

L_\text{Hinge}(y, w) = \max\left\{1 - wy, 0\right\} = \left|1 - wy\right|_+

If there are more than two labels, hinge_loss uses a multiclass variant due to Crammer & Singer. Here is the paper describing it.

If y_w is the predicted decision for true label and y_t is the maximum of the predicted decisions for all other labels, where predicted decisions are output by decision function, then multiclass hinge loss is defined by:

L_\text{Hinge}(y_w, y_t) = \max\left\{1 + y_t - y_w, 0\right\}

Here a small example demonstrating the use of the hinge_loss function with a svm classifier in a binary class problem:

              >>>                            from              sklearn              import              svm              >>>                            from              sklearn.metrics              import              hinge_loss              >>>                            X              =              [[              0              ],              [              1              ]]              >>>                            y              =              [              -              1              ,              1              ]              >>>                            est              =              svm              .              LinearSVC              (              random_state              =              0              )              >>>                            est              .              fit              (              X              ,              y              )              LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,                              intercept_scaling=1, loss='squared_hinge', max_iter=1000,                              multi_class='ovr', penalty='l2', random_state=0, tol=0.0001,                              verbose=0)              >>>                            pred_decision              =              est              .              decision_function              ([[              -              2              ],              [              3              ],              [              0.5              ]])              >>>                            pred_decision              array([-2.18...,  2.36...,  0.09...])              >>>                            hinge_loss              ([              -              1              ,              1              ,              1              ],              pred_decision              )              0.3...            

Here is an example demonstrating the use of the hinge_loss function with a svm classifier in a multiclass problem:

              >>>                            X              =              np              .              array              ([[              0              ],              [              1              ],              [              2              ],              [              3              ]])              >>>                            Y              =              np              .              array              ([              0              ,              1              ,              2              ,              3              ])              >>>                            labels              =              np              .              array              ([              0              ,              1              ,              2              ,              3              ])              >>>                            est              =              svm              .              LinearSVC              ()              >>>                            est              .              fit              (              X              ,              Y              )              LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,                              intercept_scaling=1, loss='squared_hinge', max_iter=1000,                              multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,                              verbose=0)              >>>                            pred_decision              =              est              .              decision_function              ([[              -              1              ],              [              2              ],              [              3              ]])              >>>                            y_true              =              [              0              ,              2              ,              3              ]              >>>                            hinge_loss              (              y_true              ,              pred_decision              ,              labels              )              0.56...            

3.3.2.10. Log loss¶

Log loss, also called logistic regression loss or cross-entropy loss, is defined on probability estimates. It is commonly used in (multinomial) logistic regression and neural networks, as well as in some variants of expectation-maximization, and can be used to evaluate the probability outputs ( predict_proba ) of a classifier instead of its discrete predictions.

For binary classification with a true label y \in \{0,1\} and a probability estimate p = \operatorname{Pr}(y = 1), the log loss per sample is the negative log-likelihood of the classifier given the true label:

L_{\log}(y, p) = -\log \operatorname{Pr}(y|p) = -(y \log (p) + (1 - y) \log (1 - p))

This extends to the multiclass case as follows. Let the true labels for a set of samples be encoded as a 1-of-K binary indicator matrix Y, i.e., y_{i,k} = 1 if sample i has label k taken from a set of K labels. Let P be a matrix of probability estimates, with p_{i,k} = \operatorname{Pr}(t_{i,k} = 1). Then the log loss of the whole set is

L_{\log}(Y, P) = -\log \operatorname{Pr}(Y|P) = - \frac{1}{N} \sum_{i=0}^{N-1} \sum_{k=0}^{K-1} y_{i,k} \log p_{i,k}

To see how this generalizes the binary log loss given above, note that in the binary case, p_{i,0} = 1 - p_{i,1} and y_{i,0} = 1 - y_{i,1}, so expanding the inner sum over y_{i,k} \in \{0,1\} gives the binary log loss.

The log_loss function computes log loss given a list of ground-truth labels and a probability matrix, as returned by an estimator's predict_proba method.

              >>>                            from              sklearn.metrics              import              log_loss              >>>                            y_true              =              [              0              ,              0              ,              1              ,              1              ]              >>>                            y_pred              =              [[              .              9              ,              .              1              ],              [              .              8              ,              .              2              ],              [              .              3              ,              .              7              ],              [              .              01              ,              .              99              ]]              >>>                            log_loss              (              y_true              ,              y_pred              )              0.1738...            

The first [.9, .1] in y_pred denotes 90% probability that the first sample has label 0. The log loss is non-negative.

3.3.2.11. Matthews correlation coefficient¶

The matthews_corrcoef function computes the Matthew's correlation coefficient (MCC) for binary classes. Quoting Wikipedia:

"The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary (two-class) classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient."

If tp, tn, fp and fn are respectively the number of true positives, true negatives, false positives and false negatives, the MCC coefficient is defined as

MCC = \frac{tp \times tn - fp \times fn}{\sqrt{(tp + fp)(tp + fn)(tn + fp)(tn + fn)}}.

Here is a small example illustrating the usage of the matthews_corrcoef function:

              >>>                            from              sklearn.metrics              import              matthews_corrcoef              >>>                            y_true              =              [              +              1              ,              +              1              ,              +              1              ,              -              1              ]              >>>                            y_pred              =              [              +              1              ,              -              1              ,              +              1              ,              +              1              ]              >>>                            matthews_corrcoef              (              y_true              ,              y_pred              )              -0.33...            

3.3.2.12. Receiver operating characteristic (ROC)¶

The function roc_curve computes the receiver operating characteristic curve, or ROC curve. Quoting Wikipedia :

"A receiver operating characteristic (ROC), or simply ROC curve, is a graphical plot which illustrates the performance of a binary classifier system as its discrimination threshold is varied. It is created by plotting the fraction of true positives out of the positives (TPR = true positive rate) vs. the fraction of false positives out of the negatives (FPR = false positive rate), at various threshold settings. TPR is also known as sensitivity, and FPR is one minus the specificity or true negative rate."

This function requires the true binary value and the target scores, which can either be probability estimates of the positive class, confidence values, or binary decisions. Here is a small example of how to use the roc_curve function:

              >>>                            import              numpy              as              np              >>>                            from              sklearn.metrics              import              roc_curve              >>>                            y              =              np              .              array              ([              1              ,              1              ,              2              ,              2              ])              >>>                            scores              =              np              .              array              ([              0.1              ,              0.4              ,              0.35              ,              0.8              ])              >>>                            fpr              ,              tpr              ,              thresholds              =              roc_curve              (              y              ,              scores              ,              pos_label              =              2              )              >>>                            fpr              array([ 0. ,  0.5,  0.5,  1. ])              >>>                            tpr              array([ 0.5,  0.5,  1. ,  1. ])              >>>                            thresholds              array([ 0.8 ,  0.4 ,  0.35,  0.1 ])            

This figure shows an example of such an ROC curve:

../_images/plot_roc_0011.png

The roc_auc_score function computes the area under the receiver operating characteristic (ROC) curve, which is also denoted by AUC or AUROC. By computing the area under the roc curve, the curve information is summarized in one number. For more information see the Wikipedia article on AUC.

              >>>                            import              numpy              as              np              >>>                            from              sklearn.metrics              import              roc_auc_score              >>>                            y_true              =              np              .              array              ([              0              ,              0              ,              1              ,              1              ])              >>>                            y_scores              =              np              .              array              ([              0.1              ,              0.4              ,              0.35              ,              0.8              ])              >>>                            roc_auc_score              (              y_true              ,              y_scores              )              0.75            

In multi-label classification, the roc_auc_score function is extended by averaging over the labels as above.

Compared to metrics such as the subset accuracy, the Hamming loss, or the F1 score, ROC doesn't require optimizing a threshold for each label. The roc_auc_score function can also be used in multi-class classification, if the predicted outputs have been binarized.

../_images/plot_roc_0021.png

3.3.2.13. Zero one loss¶

The zero_one_loss function computes the sum or the average of the 0-1 classification loss (L_{0-1}) over n_{\text{samples}}. By default, the function normalizes over the sample. To get the sum of the L_{0-1}, set normalize to False .

In multilabel classification, the zero_one_loss scores a subset as one if its labels strictly match the predictions, and as a zero if there are any errors. By default, the function returns the percentage of imperfectly predicted subsets. To get the count of such subsets instead, set normalize to False

If \hat{y}_i is the predicted value of the i-th sample and y_i is the corresponding true value, then the 0-1 loss L_{0-1} is defined as:

L_{0-1}(y_i, \hat{y}_i) = 1(\hat{y}_i \not= y_i)

where 1(x) is the indicator function.

              >>>                            from              sklearn.metrics              import              zero_one_loss              >>>                            y_pred              =              [              1              ,              2              ,              3              ,              4              ]              >>>                            y_true              =              [              2              ,              2              ,              3              ,              4              ]              >>>                            zero_one_loss              (              y_true              ,              y_pred              )              0.25              >>>                            zero_one_loss              (              y_true              ,              y_pred              ,              normalize              =              False              )              1            

In the multilabel case with binary label indicators, where the first label set [0,1] has an error:

              >>>                            zero_one_loss              (              np              .              array              ([[              0              ,              1              ],              [              1              ,              1              ]]),              np              .              ones              ((              2              ,              2              )))              0.5              >>>                            zero_one_loss              (              np              .              array              ([[              0              ,              1              ],              [              1              ,              1              ]]),              np              .              ones              ((              2              ,              2              )),              normalize              =              False              )              1            

3.3.3. Multilabel ranking metrics¶

In multilabel learning, each sample can have any number of ground truth labels associated with it. The goal is to give high scores and better rank to the ground truth labels.

3.3.3.1. Coverage error¶

The coverage_error function computes the average number of labels that have to be included in the final prediction such that all true labels are predicted. This is useful if you want to know how many top-scored-labels you have to predict in average without missing any true one. The best value of this metrics is thus the average number of true labels.

Formally, given a binary indicator matrix of the ground truth labels y \in \left\{0, 1\right\}^{n_\text{samples} \times n_\text{labels}} and the score associated with each label \hat{f} \in \mathbb{R}^{n_\text{samples} \times n_\text{labels}}, the coverage is defined as

coverage(y, \hat{f}) = \frac{1}{n_{\text{samples}}}    \sum_{i=0}^{n_{\text{samples}} - 1} \max_{j:y_{ij} = 1} \text{rank}_{ij}

with \text{rank}_{ij} = \left|\left\{k: \hat{f}_{ik} \geq \hat{f}_{ij} \right\}\right|. Given the rank definition, ties in y_scores are broken by giving the maximal rank that would have been assigned to all tied values.

Here is a small example of usage of this function:

              >>>                            import              numpy              as              np              >>>                            from              sklearn.metrics              import              coverage_error              >>>                            y_true              =              np              .              array              ([[              1              ,              0              ,              0              ],              [              0              ,              0              ,              1              ]])              >>>                            y_score              =              np              .              array              ([[              0.75              ,              0.5              ,              1              ],              [              1              ,              0.2              ,              0.1              ]])              >>>                            coverage_error              (              y_true              ,              y_score              )              2.5            

3.3.3.2. Label ranking average precision¶

The label_ranking_average_precision_score function implements label ranking average precision (LRAP). This metric is linked to the average_precision_score function, but is based on the notion of label ranking instead of precision and recall.

Label ranking average precision (LRAP) is the average over each ground truth label assigned to each sample, of the ratio of true vs. total labels with lower score. This metric will yield better scores if you are able to give better rank to the labels associated with each sample. The obtained score is always strictly greater than 0, and the best value is 1. If there is exactly one relevant label per sample, label ranking average precision is equivalent to the mean reciprocal rank.

Formally, given a binary indicator matrix of the ground truth labels y \in \mathcal{R}^{n_\text{samples} \times n_\text{labels}} and the score associated with each label \hat{f} \in \mathcal{R}^{n_\text{samples} \times n_\text{labels}}, the average precision is defined as

LRAP(y, \hat{f}) = \frac{1}{n_{\text{samples}}}    \sum_{i=0}^{n_{\text{samples}} - 1} \frac{1}{|y_i|}    \sum_{j:y_{ij} = 1} \frac{|\mathcal{L}_{ij}|}{\text{rank}_{ij}}

with \mathcal{L}_{ij} = \left\{k: y_{ik} = 1, \hat{f}_{ik} \geq \hat{f}_{ij} \right\}, \text{rank}_{ij} = \left|\left\{k: \hat{f}_{ik} \geq \hat{f}_{ij} \right\}\right| and |\cdot| is the l0 norm or the cardinality of the set.

Here is a small example of usage of this function:

              >>>                            import              numpy              as              np              >>>                            from              sklearn.metrics              import              label_ranking_average_precision_score              >>>                            y_true              =              np              .              array              ([[              1              ,              0              ,              0              ],              [              0              ,              0              ,              1              ]])              >>>                            y_score              =              np              .              array              ([[              0.75              ,              0.5              ,              1              ],              [              1              ,              0.2              ,              0.1              ]])              >>>                            label_ranking_average_precision_score              (              y_true              ,              y_score              )              0.416...            

3.3.3.3. Ranking loss¶

The label_ranking_loss function computes the ranking loss which averages over the samples the number of label pairs that are incorrectly ordered, i.e. true labels have a lower score than false labels, weighted by the the inverse number of false and true labels. The lowest achievable ranking loss is zero.

Formally, given a binary indicator matrix of the ground truth labels y \in \left\{0, 1\right\}^{n_\text{samples} \times n_\text{labels}} and the score associated with each label \hat{f} \in \mathbb{R}^{n_\text{samples} \times n_\text{labels}}, the ranking loss is defined as

\text{ranking\_loss}(y, \hat{f}) =  \frac{1}{n_{\text{samples}}}    \sum_{i=0}^{n_{\text{samples}} - 1} \frac{1}{|y_i|(n_\text{labels} - |y_i|)}    \left|\left\{(k, l): \hat{f}_{ik} < \hat{f}_{il}, y_{ik} = 1, y_{il} = 0 \right\}\right|

where |\cdot| is the \ell_0 norm or the cardinality of the set.

Here is a small example of usage of this function:

              >>>                            import              numpy              as              np              >>>                            from              sklearn.metrics              import              label_ranking_loss              >>>                            y_true              =              np              .              array              ([[              1              ,              0              ,              0              ],              [              0              ,              0              ,              1              ]])              >>>                            y_score              =              np              .              array              ([[              0.75              ,              0.5              ,              1              ],              [              1              ,              0.2              ,              0.1              ]])              >>>                            label_ranking_loss              (              y_true              ,              y_score              )              0.75...              >>>                            # With the following prediction, we have perfect and minimal loss              >>>                            y_score              =              np              .              array              ([[              1.0              ,              0.1              ,              0.2              ],              [              0.1              ,              0.2              ,              0.9              ]])              >>>                            label_ranking_loss              (              y_true              ,              y_score              )              0.0            

3.3.4. Regression metrics¶

The sklearn.metrics module implements several loss, score, and utility functions to measure regression performance. Some of those have been enhanced to handle the multioutput case: mean_squared_error , mean_absolute_error , explained_variance_score and r2_score .

These functions have an multioutput keyword argument which specifies the way the scores or losses for each individual target should be averaged. The default is 'uniform_average' , which specifies a uniformly weighted mean over outputs. If an ndarray of shape (n_outputs,) is passed, then its entries are interpreted as weights and an according weighted average is returned. If multioutput is 'raw_values' is specified, then all unaltered individual scores or losses will be returned in an array of shape (n_outputs,) .

The r2_score and explained_variance_score accept an additional value 'variance_weighted' for the multioutput parameter. This option leads to a weighting of each individual score by the variance of the corresponding target variable. This setting quantifies the globally captured unscaled variance. If the target variables are of different scale, then this score puts more importance on well explaining the higher variance variables. multioutput='variance_weighted' is the default value for r2_score for backward compatibility. This will be changed to uniform_average in the future.

3.3.4.1. Explained variance score¶

The explained_variance_score computes the explained variance regression score.

If \hat{y} is the estimated target output, y the corresponding (correct) target output, and Var is Variance, the square of the standard deviation, then the explained variance is estimated as follow:

\texttt{explained\_{}variance}(y, \hat{y}) = 1 - \frac{Var\{ y - \hat{y}\}}{Var\{y\}}

The best possible score is 1.0, lower values are worse.

Here is a small example of usage of the explained_variance_score function:

              >>>                            from              sklearn.metrics              import              explained_variance_score              >>>                            y_true              =              [              3              ,              -              0.5              ,              2              ,              7              ]              >>>                            y_pred              =              [              2.5              ,              0.0              ,              2              ,              8              ]              >>>                            explained_variance_score              (              y_true              ,              y_pred              )              0.957...              >>>                            y_true              =              [[              0.5              ,              1              ],              [              -              1              ,              1              ],              [              7              ,              -              6              ]]              >>>                            y_pred              =              [[              0              ,              2              ],              [              -              1              ,              2              ],              [              8              ,              -              5              ]]              >>>                            explained_variance_score              (              y_true              ,              y_pred              ,              multioutput              =              'raw_values'              )              ...                            array([ 0.967...,  1.        ])              >>>                            explained_variance_score              (              y_true              ,              y_pred              ,              multioutput              =              [              0.3              ,              0.7              ])              ...                            0.990...            

3.3.4.2. Mean absolute error¶

The mean_absolute_error function computes mean absolute error, a risk metric corresponding to the expected value of the absolute error loss or l1-norm loss.

If \hat{y}_i is the predicted value of the i-th sample, and y_i is the corresponding true value, then the mean absolute error (MAE) estimated over n_{\text{samples}} is defined as

\text{MAE}(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} \left| y_i - \hat{y}_i \right|.

Here is a small example of usage of the mean_absolute_error function:

              >>>                            from              sklearn.metrics              import              mean_absolute_error              >>>                            y_true              =              [              3              ,              -              0.5              ,              2              ,              7              ]              >>>                            y_pred              =              [              2.5              ,              0.0              ,              2              ,              8              ]              >>>                            mean_absolute_error              (              y_true              ,              y_pred              )              0.5              >>>                            y_true              =              [[              0.5              ,              1              ],              [              -              1              ,              1              ],              [              7              ,              -              6              ]]              >>>                            y_pred              =              [[              0              ,              2              ],              [              -              1              ,              2              ],              [              8              ,              -              5              ]]              >>>                            mean_absolute_error              (              y_true              ,              y_pred              )              0.75              >>>                            mean_absolute_error              (              y_true              ,              y_pred              ,              multioutput              =              'raw_values'              )              array([ 0.5,  1. ])              >>>                            mean_absolute_error              (              y_true              ,              y_pred              ,              multioutput              =              [              0.3              ,              0.7              ])              ...                            0.849...            

3.3.4.3. Mean squared error¶

The mean_squared_error function computes mean square error, a risk metric corresponding to the expected value of the squared (quadratic) error loss or loss.

If \hat{y}_i is the predicted value of the i-th sample, and y_i is the corresponding true value, then the mean squared error (MSE) estimated over n_{\text{samples}} is defined as

\text{MSE}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples} - 1} (y_i - \hat{y}_i)^2.

Here is a small example of usage of the mean_squared_error function:

              >>>                            from              sklearn.metrics              import              mean_squared_error              >>>                            y_true              =              [              3              ,              -              0.5              ,              2              ,              7              ]              >>>                            y_pred              =              [              2.5              ,              0.0              ,              2              ,              8              ]              >>>                            mean_squared_error              (              y_true              ,              y_pred              )              0.375              >>>                            y_true              =              [[              0.5              ,              1              ],              [              -              1              ,              1              ],              [              7              ,              -              6              ]]              >>>                            y_pred              =              [[              0              ,              2              ],              [              -              1              ,              2              ],              [              8              ,              -              5              ]]              >>>                            mean_squared_error              (              y_true              ,              y_pred              )              0.7083...            

3.3.4.5. R² score, the coefficient of determination¶

The r2_score function computes R², the coefficient of determination. It provides a measure of how well future samples are likely to be predicted by the model. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

If \hat{y}_i is the predicted value of the i-th sample and y_i is the corresponding true value, then the score R² estimated over n_{\text{samples}} is defined as

R^2(y, \hat{y}) = 1 - \frac{\sum_{i=0}^{n_{\text{samples}} - 1} (y_i - \hat{y}_i)^2}{\sum_{i=0}^{n_\text{samples} - 1} (y_i - \bar{y})^2}

where \bar{y} =  \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}} - 1} y_i.

Here is a small example of usage of the r2_score function:

              >>>                            from              sklearn.metrics              import              r2_score              >>>                            y_true              =              [              3              ,              -              0.5              ,              2              ,              7              ]              >>>                            y_pred              =              [              2.5              ,              0.0              ,              2              ,              8              ]              >>>                            r2_score              (              y_true              ,              y_pred              )              0.948...              >>>                            y_true              =              [[              0.5              ,              1              ],              [              -              1              ,              1              ],              [              7              ,              -              6              ]]              >>>                            y_pred              =              [[              0              ,              2              ],              [              -              1              ,              2              ],              [              8              ,              -              5              ]]              >>>                            r2_score              (              y_true              ,              y_pred              ,              multioutput              =              'variance_weighted'              )              ...                            0.938...              >>>                            y_true              =              [[              0.5              ,              1              ],              [              -              1              ,              1              ],              [              7              ,              -              6              ]]              >>>                            y_pred              =              [[              0              ,              2              ],              [              -              1              ,              2              ],              [              8              ,              -              5              ]]              >>>                            r2_score              (              y_true              ,              y_pred              ,              multioutput              =              'uniform_average'              )              ...                            0.936...              >>>                            r2_score              (              y_true              ,              y_pred              ,              multioutput              =              'raw_values'              )              ...                            array([ 0.965...,  0.908...])              >>>                            r2_score              (              y_true              ,              y_pred              ,              multioutput              =              [              0.3              ,              0.7              ])              ...                            0.925...            

3.3.6. Dummy estimators¶

When doing supervised learning, a simple sanity check consists of comparing one's estimator against simple rules of thumb. DummyClassifier implements three such simple strategies for classification:

  • stratified generates random predictions by respecting the training set class distribution.

  • most_frequent always predicts the most frequent label in the training set.

  • prior always predicts the class that maximizes the class prior (like most_frequent`) and ``predict_proba returns the class prior.

  • uniform generates predictions uniformly at random.

  • constant always predicts a constant label that is provided by the user.

    A major motivation of this method is F1-scoring, when the positive class is in the minority.

Note that with all these strategies, the predict method completely ignores the input data!

To illustrate DummyClassifier , first let's create an imbalanced dataset:

            >>>                        from            sklearn.datasets            import            load_iris            >>>                        from            sklearn.cross_validation            import            train_test_split            >>>                        iris            =            load_iris            ()            >>>                        X            ,            y            =            iris            .            data            ,            iris            .            target            >>>                        y            [            y            !=            1            ]            =            -            1            >>>                        X_train            ,            X_test            ,            y_train            ,            y_test            =            train_test_split            (            X            ,            y            ,            random_state            =            0            )          

Next, let's compare the accuracy of SVC and most_frequent :

            >>>                        from            sklearn.dummy            import            DummyClassifier            >>>                        from            sklearn.svm            import            SVC            >>>                        clf            =            SVC            (            kernel            =            'linear'            ,            C            =            1            )            .            fit            (            X_train            ,            y_train            )            >>>                        clf            .            score            (            X_test            ,            y_test            )            0.63...            >>>                        clf            =            DummyClassifier            (            strategy            =            'most_frequent'            ,            random_state            =            0            )            >>>                        clf            .            fit            (            X_train            ,            y_train            )            DummyClassifier(constant=None, random_state=0, strategy='most_frequent')            >>>                        clf            .            score            (            X_test            ,            y_test            )            0.57...          

We see that SVC doesn't do much better than a dummy classifier. Now, let's change the kernel:

            >>>                        clf            =            SVC            (            kernel            =            'rbf'            ,            C            =            1            )            .            fit            (            X_train            ,            y_train            )            >>>                        clf            .            score            (            X_test            ,            y_test            )            0.97...          

We see that the accuracy was boosted to almost 100%. A cross validation strategy is recommended for a better estimate of the accuracy, if it is not too CPU costly. For more information see the Cross-validation: evaluating estimator performance section. Moreover if you want to optimize over the parameter space, it is highly recommended to use an appropriate methodology; see the Grid Search: Searching for estimator parameters section for details.

More generally, when the accuracy of a classifier is too close to random, it probably means that something went wrong: features are not helpful, a hyperparameter is not correctly tuned, the classifier is suffering from class imbalance, etc...

DummyRegressor also implements four simple rules of thumb for regression:

  • mean always predicts the mean of the training targets.
  • median always predicts the median of the training targets.
  • quantile always predicts a user provided quantile of the training targets.
  • constant always predicts a constant value that is provided by the user.

In all these strategies, the predict method completely ignores the input data.

entsvail.blogspot.com

Source: http://lijiancheng0614.github.io/scikit-learn/modules/model_evaluation.html

Komentar




banner



Popular Posts

بيض البرص / ما هي أضرار البرص على الإنسان ؟ | مقال - تتعرض مليارات الكتاكيت في جميع أنحاء العالم إلى القتل فور فقسها من البيضة.

بيض البرص / ما هي أضرار البرص على الإنسان ؟ | مقال - تتعرض مليارات الكتاكيت في جميع أنحاء العالم إلى القتل فور فقسها من البيضة. . تتعرض مليارات الكتاكيت في جميع أنحاء العالم إلى القتل فور فقسها من البيضة. الفرق بين النخالة البيضاء والبهاق. #بيض_الثعبان #بيض_البرص #الزواحف شاهد لأول مره بيض البرص قبل الفقس فيديو اليوم كان فيديو صادم جدآ. البرص هو الجذام وإن كان البعض يطلق خطأ اسم البرص على مرض البهاق وهو مرض بكتيري خطير ومعدي. مرض البرص هو أحد الأمراض الجلدية التي تصيب الجلد وتتسبب في وجود بقع بيضاء أفتح من لون الجلد وتتسبب في زوال صبغة الميلانين من الجلد وتنتشر في جميع أجزاء الجسم. ويشير المصطلح البرص عادةً إلى (المَهَق) وهي مجموعة من الاضطرابات الموروثة حيث يحدث فيها قِلة إنتاج صباغ الميلانين أو انعدام لإنتاجه. متخصصون في بيع وتوريد أفضل أنواع بيض المائدة. 2 البرص في الحلم يعني ايه قد يدل البرص في المنام على شخص مجرم و قاتل ، أو يدل على شخصاً زانياً محصناً ، وقد يدل على شخص عدو. رؤية قتل البرص أو الوزغ في منام الحامل، هو يدل على تجاوزها لمرحلة الحمل بسهولة، وانها ست

Cara Membuat Es Campur Vincau Tanpa Sirup / 5 Resep Cara Membuat Cincau Hitam Dan Hijau Agar Kenyal Juga Es Cappucino Cincau Diadona Id / Kamu bisa membuat sirop gula merah sendiri dengan mudah di rumah.

Cara Membuat Es Campur Vincau Tanpa Sirup / 5 Resep Cara Membuat Cincau Hitam Dan Hijau Agar Kenyal Juga Es Cappucino Cincau Diadona Id / Kamu bisa membuat sirop gula merah sendiri dengan mudah di rumah. . Cara membuat es campur vincau tanpa sirup : Cara membuat es campur vincau tanpa sirup : Sering kali kita gagal dalam pembuatan cincau hijau baik itu dalam 330 gram cincau hitam tanpa tambahan bahan lainnya, terkandung 184 kalori. Resep siomay tanpa ikan bumbu kacang yang enak dan mudah. Cara membuat sirup gula untuk minuman rahasia penjual es resep sirup gula kental untuk cara membuat es campur utk sajian berbuka puasa bahan bahan : Tata dalam mangkuk, kelapa muda, cincau hitam, biji selasih, es batu lalu tuang kuah santan yang sudah dingin dan sirup cocopandan sesuai selera. Cara membuat es campur vincau tanpa sirup es cincau tanpa santan mas oben gulanya campur pandan stasiun jayakarta youtube cara bikin es cream tanpa mesin pendingin from i0.wp.com tata dalam ma

185.63. 253.200 / 185.63. 253.200 : Netherlands Based 185 63 253 200 Ip ... / Don't forget to leave your rating and comment, to help us improve our community database.

185.63. 253.200 / 185.63. 253.200 : Netherlands Based 185 63 253 200 Ip ... / Don't forget to leave your rating and comment, to help us improve our community database. . .(дергачи, украина) 185.62.200.240 (химки) 194.1.214.8 (химки) 95.82.127.174 (алматы, казахстан) 89.163.249.244 (düsseldorf, германия) гонконг, особый административный район китая) 188.162.48.121 (волгоград) 185.210.142.76 (новокузнецк) 31.173.241.114 (новосибирск). Karena itu ketenaran kueri ini jadi incaran beberapa pemakai internet karenanya ini mereka. Track website visitors ips with mobile tracker. 253.200 dan 185.63.153.200 china ialah sebuah ip adress yang bsia dijadikan sebagai media info atau telekomunikasi sekarang ini. Ip address 185.63.253.200 is a public ipv4 address and owned by hostpalace web solution pvt located in the netherlands. Redaksikerja.com 185.63.l53.200 dan 185.63.253.200 ini adalah sebuah alamat ip yang dimana kini sedang banyak di cari oleh waraganet pecinta video boke

Driver For Hp Photosmart C7280 Printer / Hp 363 Original Dye Based Ink Photo Black Hp Hp Deskjet F21

Driver For Hp Photosmart C7280 Printer / Hp 363 Original Dye Based Ink Photo Black Hp Hp Deskjet F21 . Laserjet printers make it easy to get all of your work accomplished in the office or at home. Check out these best reviewed laserjet printers, and pick the perfect printer for your life and your work. If you're hoping for something more officey or more full featured, you would be better off looking elsewhere price when reviewed tbc if you're hoping for something more officey or more full featured, you would be better off looking. Fortunately, a few simple diagnostic steps can help you get your hp printer functioning again. By susan silvius pcworld | today's best tech deals picked by pcworld's editors top deals on great products picked by techconnect's editors hp's pho. That investment becomes even more expensive when inkjet. By susan silvius pcworld | today's best tech deals picked by pcworld's editors top deals on great products pick

Türkei Hochrisikogebiet - Türkei Urlaub in diesem Jahr trotz Corona möglich

Türkei Hochrisikogebiet - Türkei Urlaub in diesem Jahr trotz Corona möglich . Die usa und israel sind ab sonntag betroffen, die türkei erst ab dienstag. Die usa und israel sind laut medien ab sonntag betroffen, die türkei erst ab dienstag. Daraufhin folgte eine reisewarnung der bundesregierung. Folgende staaten gelten aktuell als hochrisikogebiet: Näytä tietoja kyselystä #hochrisikogebiet facebookissa. Die usa und israel sind laut medien ab sonntag betroffen, die türkei erst ab dienstag. Bei einem aufenthalt in einem hochrisikogebiet beträgt die. Facebook antaa ihmisille mahdollisuuden jakaa kokemuksiaan sekä lisää avoimuutta ja yhteydenpitoa. Näytä tietoja kyselystä #hochrisikogebiet facebookissa. Hochrisikogebiete sind quasi das pendant wer in einem hochrisikogebiet urlaub macht, für den gelten bei der rückkehr nach deutschland die. Türkei, USA und Israel werden Corona-Hochrisikogebiete

Application Letter For A Job : Cover Letter For Different Job Applications

Application Letter For A Job : Cover Letter For Different Job Applications . If the substance of your letter of application sample is okay. Give the reference of the relevant. As with all cover letters, a job application letter is divided into. A job application letter, or a cover letter, can also greatly impact the way employers look at you as a candidate. · i am writing (to enquire) about / in regard to your newspaper advertisement in … concerning your need for a … A well crafted letter of application can increase the chances of getting called for interview for the job, despite of the professional qualifications mention personal skills and attributions which can be an additional benefit for a job. A job application letter, or a cover letter, can also greatly impact the way employers look at you as a candidate. A job application letter is used to identify and select suitable candidates for a particular position. A job request letter refers to the letter which job se

Ayank Prank Ojol / Miss Ayank : Ninaaaaa ( . ) ( . ) on Twitter: "Dijilat ... - Ayank prank ojol link full download di deskripsi.

Ayank Prank Ojol / Miss Ayank : Ninaaaaa ( . ) ( . ) on Twitter: "Dijilat ... - Ayank prank ojol link full download di deskripsi. . Viral ojol ayang prank | jalan 2 prank ojol. Bintang neraka 14.590 views3 months ago. #prank prank teman kuliah подробнее. Prank ojol di ajak ml. Enak bener jadi abang ojol,mau dong. Informasi, news, viralacemay 21, 2021may 21, 2021. Ayank prank ojol link full download di deskripsi. Ojol ini ga perduli hujan, ternyata dia pake motor yg rusak. Jamillah prank ojol live streaming part 1. Pulsa,transfer bank info join grop langsung saja chat admin. ice-t3ars from lh6.googleusercontent.com Home / unlabelled / prank ojol viral full durasi. Ayang prank ojol, syarat menonton video ojol viral. Link download di video sebelumnya. Apakah sobat pernah mendengar ayank prank ojol atau memang belum sama sekali, jika belum silahkan s

185.62 L53 200 Korea - 185.62 L53 200 Indo - Nonton 1111.90 l50 204 dan 1111.90 ... / Meskipun penggunaan alamat ip ini sudah menjadi hal yang tidak asing, namun beberapa.

185.62 L53 200 Korea - 185.62 L53 200 Indo - Nonton 1111.90 l50 204 dan 1111.90 ... / Meskipun penggunaan alamat ip ini sudah menjadi hal yang tidak asing, namun beberapa. . Banyak sekali alamat ip yang sering digunakan terkadang kebanyakan orang lebih mencari 185.63.l53.200 link yang di dalamnya tedapat 185.62 l53 200 indo. › 18563 l53 200 jepangsex japan. Untuk anda yang pensaran dengan 185 63 253 200 dan 185.62 l53 200, anda bisa mengkases kata kunci yang sudah admin siapkan pada link di bawah ini. This host has the hardware ip 185.63.200.53. Your email address will not be published. 185.62 l53 200 korea ini merupakan sebuah website yang akan admin bahas saat ini, angka ini merupakan sebuah situs yang dimana jika anda klik anda akan masuk buat kalian yang ingin nonton sebuah video yang dapat memanjakan mata, dan apa yang terdapat dalam kode angka 185.62 l53 200. Banyak sekali alamat ip yang sering digunakan terkadang kebanyakan orang lebih mencari 185.63.l53.200 l

Research Title Examples Qualitative Pdf : Qualitative Research Vs Quantitative Research The Psychology Notes Headquarters - For example, the purpose of this study is to examine the prevalence of the use of synthetic research title examples qualitative pdf is visible for you to inquiry on this website.

Research Title Examples Qualitative Pdf : Qualitative Research Vs Quantitative Research The Psychology Notes Headquarters - For example, the purpose of this study is to examine the prevalence of the use of synthetic research title examples qualitative pdf is visible for you to inquiry on this website. . 14 qualitative vs quantitative research example of a research project * title: Such focus groups provide broad overviews of the population they represent. Research title examples qualitative pdf. For example, consider a convenience store looking to improve its patronage. 'reality is complex, constructed and ultimately subjective. 'reality is complex, constructed and ultimately subjective. Types of qualitative research questions •central question is the overarching question you explore in the research study. Qualitative research paper 45 research problem. So write your qualitative research paper easily by following these topics easily. Indicate the steps to be

Phim Mùa Hoa Tìm Lại Tập 16 - Xem phim Lấy Danh Nghĩa Người Nhà Tập 16 vietsub + thuyết ... - Xem phim mới miễn phí nhanh chất lượng cao.

Phim Mùa Hoa Tìm Lại Tập 16 - Xem phim Lấy Danh Nghĩa Người Nhà Tập 16 vietsub + thuyết ... - Xem phim mới miễn phí nhanh chất lượng cao. . Xem phim online việt sub, thuyết minh, lồng tiếng chất lượng hd. Trần tuấn linh phó tổng biên tập: Trong mùa hoa tìm lại tập 16, lệ đã tình cờ gặp gỡ kẻ năm xưa hại đời mình. Kill me heal me (2014). Bạn thích các tin tức trong chủ đề này? Ở diễn biến khác, hoàn cho hai thanh niên trong làng đi theo dõi tuyết. Một tình tiết khác trong tập này cũng cho thấy mối quan hệ giữa lệ và đồng đang ngày càng thân thiết. Cú pháp tìm kiếm phim nhanh nhất trên google: Lệ thấy lạc lõng khi đi với việt; Ngôi nhà của những bông hoa the house of flowers. Clip TV - Xem Kênh Truyền Hình Mùa Hoa Tìm Lại (Tập 16) from 106b9c59d.vws.vegacdn.vn Hàng ngày, họ ẩn trong vỏ bọc là các nhân viên của một cửa hàng mì để nhận tiện làm nhiệm. Kil
close